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Preamble

I begin this essay with the questions posed:

· What are the key dimensions of teachers’ knowledge, skill, and professional practices in mathematics that are important to measure and are linked to significant teacher and/or student outcomes?

· What evidence supports the claim that these dimensions are critical?

· What are some examples of means to measure those dimensions and the associated challenges?

· How can these dimensions of teachers’ professional knowledge and practice be applied to a large-scale national evaluation of programs designed to improve pre-service teacher education?

Before addressing these questions, I will describe some significant features of the context within which these questions are posed.  Any discussion of teacher knowledge and its assessment is tied to related discussions about teaching, both in terms of instruction (the means teachers use to enable learning) and curriculum (the content teachers aim to teach).  Yet in the last 10 years, public discussions about the content of and instruction in school have become increasingly more contentious, with journalists and educators alike often using the language of “war.”  

War may seem a bit extreme to an outsider;  the elevation of minor ideological skirmishes to an undeserved status.  But Americans care deeply about the education of future generations, and tempers flare quickly around issues central to schools, including curriculum.  And to the insiders in such debates, these disagreements feel like war, accompanied by drama, intrigue, fierce disappointment, winners and losers.  The historian Lawrence Levine argues:


Academic history in the United States, then, has not been a long happy voyage in a stable vessel characterized by blissful consensus about which subjects should for the indisputable curriculum; it has been marked by a prolonged and often acrimonious struggle and debate.

The 1980s and 1990s bore witness to several such “wars”:  Nicholas Lemann (1997) recounted “the reading wars” in The Atlantic Monthly, describing the curriculum battle between phonics and whole language unfolding in California.
  Cornbleth and Waugh, as well as Nash, Crabtree, and Dunn document the “culture wars” over history and social studies curricula.
  In an address to the professional organizations of mathematicians, Secretary Riley asked for a “cease fire” of the “math wars”:

This is a very disturbing trend, and it is very wrong for anyone addressing education to be attacking another in ways that are neither constructive nor productive. 

It is perfectly appropriate to disagree on teaching methodologies and curriculum content. But what we need is a civil and constructive discourse. I am hopeful that we can have a "cease-fire" in this war -- and instead harness the energies employed on these battles for a crusade for excellence in mathematics for every American student.

Despite such calls for “civil and constructive discourse,” little progress appears to have been made on this front.  In a recent advertisement published in the form of an open letter to Riley the Washington Post, a group of research mathematicians criticized the endorsement by the Department of Education of a set of “exemplary” curricula.  “It is not likely that the mainstream views of practicing mathematicians and scientists were shared by those who designed the criteria for selection of "exemplary" and "promising" mathematics curricula,” the authors of the letter wrote.  They close the letter: “We further urge you to include well-respected mathematicians in any future evaluation of mathematics curricula conducted by the U.S. Department of Education.”  

A flurry of letters in support of and opposition to the letter followed, some sent to Riley, others e-mailed across the country among like-minded colleagues.  Mathematicians had been included in the process, so what did the comment “well respected mathematicians” mean?  “Non-research” mathematicians suggested that “research” mathematicians know little about K-12 or university teaching.  Educators asked why the definitive answer to questions concerning school mathematics should be decided by mathematicians who spend no time in school and know little of the exigencies of practice.  Hyman Bass, an internationally known algebraist and president-elect of the American Mathematical Society, observed: “What disturbs me about the open letter is that it throws an important discussion into an arena where nothing can be accomplished, and a lot of damage will be done.”  
 

It is within this contentious policy debate that this essay was commissioned.  The disagreements that fuel the discussion – about the purposes of schooling, the content of mathematics curriculum in the elementary and middle grades, the relationship between the way one teaches and what students learn, the role and validity of various learning theories, and about who should decide the content of the curriculum – constitute the context within which I answer your questions.  It is a context that ought not be ignored.  

The debate, on-going and critically important, is not easily resolved.  It deserves sustained and deliberate attention beyond the scope of this paper.  For the purposes of this essay, I will make three relatively simplistic assertions that will guide my answers to the initial questions posed.

Elementary and middle schoolteachers ought to be teaching a curriculum that balances mastery of basic mathematical knowledge and skill with problem solving.

Elementary and middle schoolteachers ought not be enslaved to the curriculum-of-the-day, but instead critical consumers of materials available.  There is an important distinction to be made between the adopted curriculum (typically a textbook series) and the enacted curriculum (the series of educative experiences orchestrated by a teacher who selectively uses the adopted curriculum).  

Elementary and middle schoolteachers ought to use a wide array of instructional strategies that they select in a reasoned manner, using their knowledge of learning theories, students, subject matter, and other relevant contexts.  Accomplished teaching – even for beginning teachers – is not ideologically-driven.  To use the language of some critics, no babies ought be thrown out with the bathwater.
  Rather, good teaching is characterized by a varied and warranted use of materials and instructional strategies designed to engage students in learning important content.  

I make these assertions based on my on-going analyses of national and state debates about mathematics education.
  Given those analyses, there is some room for a cautious optimism, for although the discourse is more often neither civil nor sustained, there appears to be considerable agreement that teachers need to do more than force children to mindlessly memorize basic facts and that a repertoire of multiple instructional strategies is preferable to a narrow focus on either direct instruction or “discovery” learning.  I will discuss many of the associated issues in my description of a professional knowledge base.

There also appears to be a real thirst for “knowledge,” insights supplied from carefully conceptualized studies that can inform our understanding of what it takes to teach mathematics well.  Nonetheless, I would predict that any attempt to answer the questions posed above would elicit fierce criticism from some corner of the educational system.   What I aim to do in this essay, however, is to answer the questions while also laying out – as fairly as possible – the range of associated concerns.
  

Teacher Knowledge, Skill, Dispositions, and Professional Practices

You asked, “What are the key dimensions of teachers’ knowledge, skill, and professional practices in mathematics that are important to measure and are linked to significant teacher and/or student outcomes?”
  

Before addressing this question, I note three related issues.  First, as to the critical dimensions of teachers’ knowledge, skill, and practices, there is no shortage of opinion.  Visions of teacher professional knowledge are most often encountered in the form of standards for teachers.  These have been issues by the National Council for Teachers of Mathematics, the National Board for Professional Teaching Standards (for experienced teachers), INTASC (for teachers in the first few years of their careers), and a growing number of states among others.
  Others sources of insight include content standards for students, for among other things, we might expect that teachers would know the content we expect them to teach.  Content standards are produced by professional organizations (like NCTM), states (like the California frameworks or content standards), and reform-oriented endeavors like America’s Choice and Core Knowledge.  In exploring this issue, I drew on these types of resources.
  

Second, the question of differences between our expectations of beginning teachers versus their more experienced colleagues is non-trivial.  This is an issue that has been central to the deliberations of the INTASC subcommittee for the development of standards for beginning elementary school teachers.
  That group continues to wrestle with the question:  “What are reasonable expectations to hold for the professional knowledge of beginning teachers who are charged with teaching all subject matters?”  

It is a thorny issue.  On the one hand, we want all teachers to be competent in teaching, no matter their experience.  On the other hand, some of the most interesting scholarship informing debates about teachers’ mathematical knowledge emphasizes the fact that – given the appropriate conditions – teachers learn much about teaching from their practice.
  Richard Askey comments on Ma’s study of Chinese teachers:

[Profound Understanding of Fundamental Mathematics] did not come directly from [new teachers’] studies in school, but from the work they did as teachers.  These teachers did not specialize in mathematics in “normal” school, which is what their teacher preparation schools are called.  But after they started teaching, most of them taught only mathematics or mathematics and one other subject.  This allowed them to specialize in ways that few of our elementary teachers can.
  

In a study currently underway, Lynn Paine and others are investigating teacher induction in Shanghai.
  In that work, we are finding additional evidence that the expectations of when and where Shanghai teachers acquire their professional knowledge (of mathematics, teaching, and students) is quite different than prevailing assumptions in the U. S.  Teaching is conceptualized differently across cultures, as are the assumptions about when and under what conditions teachers acquire new professional knowledge.
  In Shanghai, while new teachers are expected to teach competently, it is also expected that all teachers will study their practice, participate in research groups focused on learning about subject matter teaching, present their methods and ideas to their colleagues for review and discussion, write reports about the lessons they learned, and become progressively more skilled and knowledgeable about mathematics.  There is, in many ways, a tradition of and institutional support for a scholarship of teaching in Shanghai that is quite different than the U. S. non-tradition.
,

The current interest in these alternative – and, in this case, international -- models of teacher learning (that conceptualize teacher preparation as simply a first step in a long career of organized learning opportunities) serve to emphasize the importance of careful deliberations concerning the question:  What are reasonable expectations for the knowledge of beginning teachers?  

A third – and equally thorny – issue concerns the role of evidence in making claims out what teachers should know.  The visions of teachers’ professional knowledge and skill that were drafted in the 1980s and 1990s have come under increased attack for the quantity and quality of empirical evidence available to support claims made.  Again, the issues underlying this debate are neither quickly summarized or resolved, for they concern debates about the nature of knowledge in social science, the role of various qualitative and quantitative studies in generating knowledge, and the generalizability of research results to theories and populations.  

Another part of this debate concerns the question:  Who has the relevant expertise to decide what students should learn and what teachers should know:  Mathematicians?  “Highly regarded” mathematicians?  Mathematics educators or teacher educators?  Educationists?

Throughout these debates, questions have been raised about the legitimacy of various warrants for making claims about what teachers need to know.  Some argue that all claims must have empirical bases;  others argue that some claims can be made logically.  For example, while one might not have research-based evidence that teachers need to know about linear algebra to teach it, it would make logical sense.  In fact, if we consider the differences in how knowledge is generated in the disciplines of mathematics and the sciences, we would note that within mathematics, proofs are developed logically, and knowledge is accumulated through logical and reasoned arguments that are scrutinized by the community.  In science, on the other hand, knowledge accumulates through experimentation and empiricism.  

Education is not strictly like mathematics or science.  What we “know” within education is based partly on logic, partly on empiricism (which takes the form of social science).  Running throughout these debates are legitimate concerns about the “science” and logic of educational scholarship.

But as David Labaree reminds us, educational goals are political decisions, not empirical ones.
  Porter, Floden, and their colleagues made a similar claim about deciding the content of the elementary school mathematics curriculum:  “Hesitancy to confront issues of what should be taught is understandable.  Value judgments are required that cannot have their justification in empirical fact.”
 Jerome Bruner expands the idea:

Education is of quite a different order [than medicine or engineering].  Its aims are culturally constituted – generated within a culture.  “educating” somebody is drastically different from keeping the person alive or preventing death.  There is nothing “naturally” desirable, for example, about teaching young ladies in antebellum Virginia to speak and read French.  It was simply taken as a sign of cultivation . . . . Doubtless, all societies everywhere have some sort of criterion for distinguishing “cultivated” from “uncultivated” people . . . Doubtless, too, all cultures recognize, promote, and even reward “cultivatedness,” whatever form it may take.  It stands for behaving in a fashion acceptable to those who matter in the broader sodality – one’s reference group.  Its “value” is symbolic, deriving not from laws of nature but from some cultural consensus, from some canonical pattern that emerged after long, often fitful maturing.

We have yet to resolve in our curriculum debates what is a legitimate warrant for making a claim about what teachers or students ought to know.  Bruner’s “cultural consensus” – about school mathematics or science, social studies or literacy – has remained elusive.  The standards that have been generated in the last 15 years reflect that odd mix of sources, as Sykes and Plastrik note:

The idea of a standard is complex in several ways.  Historically it has evolved along two tracks:  as a rallying point or a commitment to a position, and as a unit of measure or an imposition of position.  In addition, within different contexts, a standard takes on different meanings and utility.  One context is time and space, the physical world we measure.  Another is communication, the language and ideas we construct, examine, and reconstruct for meaning.  Yet another is cultural, the norms we assess, reward, and sanction. . . . It is clear that the primary functions of standard-setting are to measure and to rally.  Both of these require precision and politics, neither of which is unchangeable, both of which are open to honest and endless dispute.

In sum, while there are myriad opinions about what teachers ought to know – reflected in standards for teachers and students, as well as the curriculum of teacher education -- those opinions remain an uneasy marriage based alternatively on research, logical analyses, and values.  Further, while the question of a difference in expectations for beginning teachers and their experienced colleagues seems reasonable, there is no resolution in sight.  Finally, because claims about teacher professional knowledge are based on an image of good teaching -- and because that is a contested domain -- the tentative answer I offer here will also – no doubt – be contested.

Enough caveats (for now).   What are the key dimensions of teachers’ knowledge, skill, and professional practices in mathematics that are important to measure and are linked to significant teacher and/or student outcomes?

Looking across the available literature (which includes standards for students and teachers, as well as empirical research conducted in both quantitative and qualitative traditions), I will nominate four critical dimensions of new teachers’ professional knowledge, skill, and professional practices:

Knowledge of mathematics

Pedagogical content knowledge of mathematics

including

knowledge of students

knowledge of instruction and representations

knowledge of curricular materials

Knowledge of learning theories

I briefly discuss each of these in turn.

Knowledge of mathematics

That teachers ought to know their subject matter is a logical claim hard to refute.
  Research conducted in the 1970s and 1980s found little relationship between teachers’ subject matter knowledge (typically measured in terms of number of courses taken) and student achievement.  However, when researchers differentiated between student achievement in computation versus understanding, variation appeared.  Begle, for example, found that teachers’ understanding of algebra was significantly correlated with student achievement measures that assessed “understanding.”  Mullens, Murnane, and Willett found a similar result in a study of 4th graders in Belize.  While there was no significant relationship found between teacher knowledge and student learning of basic concepts, there was a significant positive relationship between teacher knowledge and student learning of advanced concepts.

In her analysis of the relationship between teacher quality and student achievement, Linda Darling Hammond found statistically significant relationships between student achievement (using NAEP data) and teacher quality variables (using SASS data) like full certification and a major in the relevant field:


NAEP 1992,

Grade 4 Math
NAEP 1996,

Grade 4 Math
NAEP 1990,

Grade 8 Math
NAEP 1996,

Grade 8 Math

% of qualified teachers (full certification and a major)
.71***
.61***
.75***
.67***

% of teachers out of field (with less than a minor in the field they teach)
-.48**
-.44**
-.32
-.42**

% of all teachers fully certified
.36*
.20
.38*
.28

% of all teachers less than fully certified
-.36*
-.23*
-.33*
-.28

% of new entrants to teaching who are uncertified
-.51**
-.39*
.43**
-.38*

% of all newly hired teachers uncertified
-.40**
-.41**
-.53***
-.49**

* p<.10, ** p<.05, *** p< .01

Yet careful research on teachers’ knowledge of mathematics is spotty.  Research on secondary school teachers’ knowledge has focused on functions; in the elementary domain, there has been some research on division, fractions, rational numbers, and multiplication.
  Much of the research to date suggests that U. S. teachers do not have a firm grasp of the mathematics they teach.
  

In her work in the National Center for Research on Teacher Education (NCRTE) and then in its successor, the National Center for Research on Teacher Learning (NCRTL), Deborah Ball and her colleagues found that many prospective elementary and secondary teachers had difficulty with rudimentary mathematics.  Using both interview and questionnaire data, Ball (1990) found that elementary and secondary teacher candidates (the secondary candidates were majoring in mathematics) had difficulty “unpacking” the meaning of division by fractions.  They could not generate an appropriate representation of the problem 1 ¾ ( ½.  Thus while almost all of the candidates could solve the problem mechanically (we have all memorized the rule “invert and multiply”), few could demonstrate what the problem meant.  Few, for example, understood the problem to be one of division since the algorithm they had memorized involved multiplication.  Ball explains:

Knowing the rule and being able to use it had been sufficient to pass math tests;  consequently, they had learned to divide fractions without focusing on the meaning of division of fractions as part of the larger concept of division. 

Our interviews with prospective teachers showed that they varied in how clearly they remembered particular rules and procedures, but few connected particular ideas to larger concepts.  (p. 459)

In other work, Ball found similar results when examining prospective teachers’ ideas about division more generally and the relationship between area and perimeter.  

Liping Ma, whose research that has gotten considerable press recently, did a dissertation that drew on the data collected by researchers using the instruments that Ball had helped design.  Ma added to her sample a contrast with Chinese teachers.  In a careful examination of the differences between U. S. and Chinese teachers’ knowledge of mathematics, Ma found that 23 U. S. elementary school teachers were much more procedurally oriented than they Chinese peers.  They demonstrated competence in using simple algorithms, began to falter in even their procedural knowledge of more advanced topics (like division of fractions and the relationship between the area and perimeter of a rectangle).  In addition, U. S. teachers’ knowledge appears fragmented.

Chinese teachers, on the other hand, demonstrated a more coherent knowledge of the subject matter, as well as knowledge both procedural and conceptual.  Ma’s analysis allows the reader to see how differently mathematics is conceptualized in Chinese elementary schools, arguing that teachers knowledge of mathematics in Shanghai including a “profound understanding.”
  She goes on to argue that elementary school mathematics is “not superficial at all, and any one who teaches it has to study it hard in order to understand it in a comprehensive way.”
  

The claim that the mathematics that constitutes elementary school curriculum is challenging seems sensible.  Elementary teachers, after all, lay the foundations for the development of more sophisticated knowledge in students’ future schooling.  But stating that elementary mathematics is not superficial is simply a preliminary step toward answering the question, “What mathematics is worth knowing for elementary school teachers?”  In their on-going work investigating the role of mathematics in the tasks of teaching, Hyman Bass and Deborah Ball have been investigating the non-obvious ways in which teachers’ knowledge of mathematics is entailed in the tasks of teaching and what kinds of mathematical knowledge and skill – that is not isomorphic with the list of topics covered in the elementary curriculum – might enable good elementary school teaching.
  

This work is in its early stages, and Ma’s book, while compelling to many, does not help us resolve the issues of the mathematical knowledge of U. S. elementary school teachers.  Nonetheless, mathematicians reviewing Ma’s book, Knowing and Teaching Elementary Mathematics, have used it as the basis to argue for changes in the American system.  Askey, for example, argues:

There is more we can do.  Our teachers need good textbooks.  They need much better teachers’ manuals.  As noted before, our college math courses for future teachers at all levels need to be improved.  And just ask any teacher who has sat through mindless “workshops” whether our in-service “professional development” isn’t long overdue for major overhaul.

Askey’s call for reform also seems sensible and appropriate to consider in light of the Title II grants, for a reconfiguration of the undergraduate mathematics education for elementary, middle, and high school teachers would be an issue that most of your institutions ought to be confronting.  I return to this point at the conclusion of this section. 

One might also note the paradox that emerges from of an examination of the extant research on teachers’ mathematical knowledge.  While many participants in the on-going conversations about the preparation of and standards for teachers want empirical evidence to support any claims made, in the case of U. S. teachers knowledge of mathematics, we know more about what teachers do not know, than about what they do know.  We know that they do not know mathematics in the ways that mathematics educators or mathematicians would like them to.  We know that prospective teachers are not acquiring appropriate mathematical understanding in either their teacher education courses or the courses they take in mathematics department.  It is also likely that their lack of preparation can be traced to their K-12 experiences as students.  

Further, mathematicians and mathematics educators have yet to fully understand the relationship between the content of the elementary and middle school curriculum and what teachers ought to know about mathematics.  It appears that the relationship is not isomorphic, but we have little knowledge of what teachers really ought to know about mathematics in order to be able to teach children.  Finally, we know little about the relationship between teachers’ knowledge of mathematics and the learning of their students.  

Yet there is troubling evidence to suggest that there is some connection.  Both in survey and videotape analyses conducted under the auspices of the Third International Mathematics and Science Study (TIMSS), researchers found that U. S. students were exposed to a curriculum that was thin and fragmented.  “The content appears to be less advanced and is presented in a more piecemeal and prescriptive way,” James Stigler and James Hiebert note.
  In videotape analyses of 8th grade teachers in German, Japan, and the U. S., Stigler and his colleagues found that lessons in the U. S. appeared to place more emphasis on definitions and less on conceptual understanding or the underlying rationales.  In effect, U. S. students seem armed with technical vocabulary but lack significant understanding about how to use reason mathematically.  It seems likely that this vision of less-challenging and less-coherent mathematics that one sees in both TIMSS and Ma’s research is related, in some ways, to the lack of knowledge of U. S. teachers.

Given everything that we do not know, what are the current “best guesses” about the content that teachers ought to know?  The draft revision of the NCTM standards propose ten standards for K-12 school mathematics instructional programs:

The mathematical content standards include: 

Number and Operation 

Patterns, Functions, and Algebra 

Geometry and Spatial Sense 

Measurement 

Data Analysis, Statistics, and Probability 

The mathematical processes standards include:
 

Problem Solving 

Reasoning and Proof 

Communication 

Connections 

Representation 

The William Bennett, Checker Finn, and John Cribb (drawing on the Core Knowledge sequence) suggest that parents look for evidence of the following content in the curriculum for elementary and middle school children:

Patterns and classification

Numbers and number sense

Ratios and percent

Fractions and decimals

Money

Computation

Measurement

Geometry

Probability and statistics (starting in 5th grade)

Pre-algebra (starting in 5th grade)

Kendall and Marzano, having reviewed state and national standards, suggest the following content standards for students:

Uses a variety of strategies in the problem-solving process 

Understands and applies basic and advanced properties of the concepts of numbers 

Uses basic and advanced procedures while performing the processes of computation 

Understands and applies basic and advanced properties of the concepts of measurement 

Understands and applies basic and advanced properties of the concepts of geometry 

Understands and applies basic and advanced concepts of statistics and data analysis 

Understands and applies basic and advanced concepts of probability 

Understands and applies basic and advanced properties of functions and algebra

Understands the general nature and uses of mathematics

When considering what teachers must then know about mathematics to teach these subjects, INTASC suggests that beginning teachers ought to understand:

 Mathematical ideas from 


Number systems and number theory


Geometry and measurement


Statistics and probability


Functions, algebra, and the concepts of calculus


Discrete mathematics

Mathematical processes, including


Problem solving in mathematics

Communication in mathematics

Reasoning in mathematics

Mathematical connections

Mathematical perspectives, including

The history of mathematics

Mathematical world views

Mathematical structures

The role of technology and concrete models in mathematics

Such lists, while an essential piece of the process of delineating the requisite teacher subject matter knowledge, are only a beginning.  First, they need to be fleshed out with specifics.  Documents like the INTASC, NCTM, and state standards for teachers and students can help with this.  International comparisons help us see the consequences of the U. S. tendency to list topics, for our teachers and students seem never to develop knowledge that is more than procedural, trivialized, fragmented and incoherent.  Documents to guide the reform of teacher preparation and on-going professional development need to move beyond lists.

Consider an example.  Learning even and odd numbers is a non-controversial part of the elementary school curriculum.  In standards documents, it might be listed as: “students will be able to identify even and odd numbers.”  While most of us would feel relatively confident in our ability to identify an even number, there is much more to it than that relatively simplistic statement.  First, consider three relevant mathematical definitions.  

Fair share:  A number N is even if it can be divided into two (equal) parts with nothing left over.  (algebraically, N = 2 x k, i.e. k + k.) 


Pair:  A number N is even if it can be divided into twos (pairs) with nothing left over.  (algebraically, N = k x 2, i.e. 2+2+2+ ... +2 (k terms)). 
    

Alternating:  The even and odd numbers alternate on the (integer) number line.  So, starting with the even number 0 (or 2 if 0 makes one uneasy) one gets the even whole numbers from there by counting up by twos.  Note:  This is often referred to as the “skip” or “skipping” method, for children will skip from 1 to 3 to 5 on the number line.  


As they learn even numbers, children might ask questions or propose solutions to problems that involve any one of these definitions.  Thus, a teacher might need to understand why these three definitions are mathematically equivalent (i.e., why do they specify exactly the same class of numbers?)  


Consider Hyman Bass’s explanation:  

The equivalence of "alternating" and "pair" is that numbers of the form 2+2+2+ ... +2 are precisely those one reaches by starting from 0 and counting up by twos.  The equivalence of "pair" and "fair share" is an instance of commutativity of multiplication (viz. 2 x k = k x 2), where we understand multiplication as iterated addition of the second factor, a number of times given by the first factor.  In this case we can display the 2 x k objects as two rows of k objects, to form a rectangular array with base length k and height 2.  Then, in counting the total, instead of adding the number of terms in each row (k + k) we can instead add up the numbers in each column.  Since there are k columns with 2 objects in each column, the total, counted this way, appears as 2+2+2+ ... +2, whence the claim, 2 x k = k x 2. 

Here's an example: 
            o o o o o o o o o 
            o o o o o o o o o 

 A 9 x 2 rectangular array:  The number of o's, 18, is 9 + 9 and also 2+2+2+2+2+2+2+2+2. 

At a higher grade level, one could say that a number is even if it is a (integer) multiple of 2.  (Of course this definition presumes that we have assimilated the commutativity of multiplication, so that this definition is not ambiguous.)  Then, a mini-theorem is that a number is even if and only if, in base-10 place value notation, the units digit is even.  Many students (even elementary teachers) are at a loss for how to prove this.  Allowing sufficient algebraic resources, one could argue (in pedantically new mathematics detail) as follows.  Say that N has even units digit,  u= 2 x v.  Then N = M + u, where M has units digit 0, and so M is a (integer) multiple of 10, say M = 10 x P.  Since 10 = 2 x 5, we have N = M + u = (10 x P) + (2 x v) =  ((2 x 5) x P) + (2 x v) = (2 x (5 x P)) + (2 x v)  (associativity of x)  = 2 x ((5 x P) + v) (distributivity of x over +) is a multiple of 2, hence even.  Alternatively, one could first observe (prove) that a sum of evens is even, by this definition.  Then one is reduced to showing that a number is even if its units digit is 0. Such a number is a multiple of ten, so one can prove the general statement that an even times anything is even, which follows from associativity of x.

Based on our collective experience, I would hazard a guess that many elementary school teachers’ eyes would begin to glaze over when offered such an explanation.  Yet this seems relevant knowledge for teachers.  Research suggests that U. S. teachers tend to have fragile and underdeveloped understandings – mainly procedural – of such ideas that are fundamental to elementary mathematics.  They would know how to skip count, and they might be able to recite the fair share definition, but based on our current evidence, it is unlikely that elementary and middle school teachers in the U. S. would understand why these are equivalent definitions, or how commutivity, distributivity, or associativity are related to even numbers.  Research on teachers from other countries suggests that teachers can understand this kind of mathematics;  we have no reason to believe that we should not hope from such knowledge in our teachers.     

The problems only get more exaggerated at the middle school level.  Filling high school mathematics teaching positions has become challenging for many U. S. school districts.  Anyone with knowledge of mathematics – no matter how thin -- is quickly given a high school assignment.
  Middle schools, where students are to be building their knowledge bases in preparation for the high school curriculum, are left hiring elementary school teachers to teach middle school mathematics.  Many of these teachers have little knowledge of higher level mathematics.

Further, middle grades mathematics has traditionally been a confusing curricular territory.  In some middle or junior high schools, the mathematics curricula simply recycle elementary school.  This version – middle school as remedial elementary school mathematics – is redundant for some children, and boring for many.  In other middle schools, mathematics curricula attempt to prepare students for the traditional high school curricula.  However, studies of middle school age students suggest that assuming middle school is simply a more junior version of high school is problematic.  

This quagmire is characterized by a single truism – that middle grades mathematics is misunderstood and underconceptualized.  As the researchers on the QUASAR project have pointed out:

There exists an even greater tendency for middle school instruction to focus on procedural skill, and increased prevalence of ability-based tracking in the middle school years.  Breaking this cycle of uninteresting and limiting instructional practice in middle schools will require, among other things, empirical demonstrations that all students, even those without adequate elementary preparation in mathematics can benefit from exposure to higher-level tasks.
  

This “crack in the middle” was a primary catalyst for the development of innovative middle grades mathematics curricula, the very same curricula that are now under attack.  What the content of middle grades mathematics should be is far from resolved.  

Given this background on teachers’ knowledge of mathematics, you also asked:  What are some examples of means to measure those dimensions and the associated challenges?  How can these dimensions of teachers’ professional knowledge and practice be applied to a large-scale national evaluation of programs designed to improve pre-service teacher education?
I’ll briefly address the second question first.  Given the contentious policy debates about the content of the elementary and middle school curriculum and the keen interest among many mathematicians and mathematics educators about the adequate preparation of teachers of mathematics, it seems reasonable to ask participants in your Title II programs how they are responding to the kinds of issues raised here.

What is the mathematical content of courses for the preparation of elementary and middle school mathematics teachers?  How are decisions made about what mathematics these teachers will learn?  When and where are teachers expected to learn the relevant mathematics?  How are mathematicians involved?  What assessments are being used to evaluate the quality and effectiveness of those courses?  To what extent are such courses articulated with other coursework?  Has there been any discussion of the implications for the mathematics portion of the programs given the issues raised here?  

In the case of middle school, there are very few teacher education programs that specifically prepare teachers to teach middle grades mathematics.  As Askey notes, these teachers “frequently fall between the cracks”

The material they will be teaching is not taught in detail to either prospective elementary school teachers or prospective high school teachers:  there are no courses specifically for middle school teachers.

Some elementary school teachers take additional courses and examinations to get “endorsements” to teach middle school (so as to increase their chances of getting a job), but few prospective teachers encounter sustained and serious study of the content of middle grades mathematics, or how to teach at that level.  

One thing seems clear:  If programs believe that the status quo for preparing elementary and middle school teachers is sufficient, there is a problem.  

Your first question concerns how we can measure such knowledge:  This too proves to be an issue hard to resolve.  Many teacher education programs use as entry or exit criteria standardized tests of teacher content knowledge.  Many programs do so because of state requirements for teacher certification.  

However, the complications should be obvious.  First, if there is little agreement on what teachers ought to know about mathematics, then the content of such examinations is also disputable.  Second, the problems that have arisen in states’ standards-based reform efforts – for example, the alignment of tests with curriculum – apply equally to the case of teacher preparation programs.
  If programs aim to prepare teachers with a knowledge of subject matter both conceptual and procedural, they would need standardized tests that measure that broader definition of subject matter knowledge.  INTASC is currently struggling this issue, for part of its certification process would involve content knowledge examinations for beginning teachers.  Adequate tests do not currently exist.  

However, it is also the case that, as insufficient as they are, the current subject matter examinations for teachers (like those from ETS, for example), are not typically used by mathematics departments to evaluate the effectiveness of the courses offered to beginning teachers.  The assessment culture of many mathematics courses puts the burden on the students:  The folklore of many university mathematics departments includes students speaking of introductory courses as “weeder” classes, occasions to sort out who will continue on in mathematics and who will not.  If students do not succeed, it is simply assumed that the students did not know enough coming in, did not work hard enough, or don’t have “what it takes.”
  

For departments that separate out the prospective teachers from others, there is little data concerning how mathematics departments use student achievement data to reform their courses.  While the current assessments might not adequately assess all aspects of prospective teachers mathematical knowledge, using them to begin examining how mathematics departments take responsibility for the adequacy of prospective teachers’ subject matter knowledge might be a fruitful step to take.   

Pedagogical content knowledge

In 1985, Lee Shulman hypothesized that one aspect of teaching knowledge that had gone unexplored was something he called pedagogical content knowledge.
  Pedagogical content knowledge was a hypothesis Shulman offered to the field, a conjecture that teachers needed a teaching-sensitive knowledge of subject matter.   For the research community and higher education, the idea had appeal, for it suggested that knowing one’s subject outside of schools might not be the same as knowing one’s subject for the purposes of schooling.   A small industry devoted to exploring the concept appeared in the late 1980s, and several scholars attempted to describe more fully what pedagogical content knowledge might entail.

Pamela Grossman, in her study of novice English teachers, proposed four dimensions of PCK, including: knowledge and beliefs about the purposes of teaching a subject at various grade levels; knowledge of students’ subject-specific conceptions and misconceptions; knowledge of available curricular materials; and knowledge of various strategies and representations the enable learning specific subject matter.
  While these dimensions are sensible, the underspecified nature of pedagogical content knowledge – understandable since it was offered as a conjecture to be explored – continues to make it difficult to say with certainty what PCK might entail.

Nonetheless, researchers have begun exploring this area.  Denise Mewborn notes, “Much of what we know about teachers’ pedagogical content knowledge is intertwined with what we know about their substantive knowledge and is not particularly revealing.”
  Borko and her colleagues, for instance, found in one case study that a teacher with limited mathematical knowledge of division of fractions also had limited knowledge of instructional representations that would help children understand “invert and multiply.”
  Again, these results resonate with cross-cultural studies.  In the NSF study of teacher induction in Shanghai that I am currently participating in, we recently learned that new teachers learn three things about the subject matters they are to teach.  First, they major in the subject in college (where they acquire a beginning knowledge of mathematics).  Then, when they enter teaching they learn two education-related issues about the subject:  they learn the “important points” of mathematics (zhongdian) and they learn the “difficult points”  (nandian).  One helps the new teacher understand what content takes priority;  the other helps the new teacher learn what content typically gives students a difficult time.

Ma, in her research, does not explicitly address these concepts.  However, she alludes to them as being part of what she calls “profound understanding of fundamental mathematics (PUFM)”:

Profound understanding of fundamental mathematics (PUFM) is more than a sound conceptual understanding of elementary mathematics – it is the awareness of the conceptual structure and basic attitudes of mathematics inherent in elementary mathematics and the ability to provide foundation for that conceptual structure and instill those basic attitudes in students.  A profound understanding of mathematics has breadth, depth, and thoroughness.  Breadth of understanding is the capacity to connect a topic with topics of similar or less conceptual power.  Depth of understanding is the capacity to connect a topic with those of greater conceptual power.  Thoroughness is the capacity to connect all topics.

The teaching of a teacher with PUFM has connectedness, promotes multiple approaches to solving a given problem, revisits and reinforces basic ideas, and has longitudinal coherence.  A teacher with PUFM is able to reveal and represent connections among mathematical concepts and procedures to students.  He or she appreciates different facets of an idea and various approaches to a solution, as well as their advantages and disadvantages – and is able to provide explanations for students of these various facets and approaches.  (p. 124)

In the U.S., we have not typically spent a lot of time learning about the “difficult points” of our subject matters.  Nor do our teachers – prospective and practicing – receive the institutional and intellectual support necessary to develop PUFM, PCK, nandian, zhongdian.  

However, there is some promising – but uneven research – that might help teachers plan and teach, some of which falls within the rubric offered by Grossman.  I describe some of it here.  

Knowledge of students.  This is an area where mathematics education research has much to offer.  For example, researchers have found that students have difficulty understanding how symbols are used in algebra. They are often unaware of the arbitrariness of the letters chosen to represent variables in equations. Middle-school and high-school students may regard the letters as shorthand for single objects, or as specific but unknown numbers, or as generalized numbers before they understand them as representations of variables.  These difficulties tend to persist even after instruction in algebra and are evident even in college students. Long-term experience (3 years) in elementary computer programming has been shown to help middle-school students overcome these difficulties, although short-term experiences (less than 6 months) are less successful.  

Students of all ages often interpret graphs of situations as literal pictures rather than as symbolic representations of the situations.  I learned this when I was teaching third grade social studies several years ago and I asked students to draw a map of their bedrooms and provide a key to the map.  We had gone over the way to construct maps and the role of a key.  Half of the students came in the next day with pictures of their bedrooms, walls decorated with posters, beds full of stuffed animals.  I remember that one student drew a key – a skeleton key – trying to be the good student.  Researchers have also found that, when constructing graphs, middle-school and high-school students have difficulties with the notions of interval scale and coordinates even after traditional instruction in algebra. For example, some students think it is legitimate to construct different scales for the positive and the negative parts of the axes. Alternatively, students think that the scales on the X and Y axes must be identical, even if that obscures the relationship. When interpreting graphs, middle-school students do not understand the effect that a scale change would have on the appearance of the graph.  Finally, students read graphs point-by-point and ignore their global features.  This has been attributed to algebra lessons where students are given questions that they could easily answer from a table of ordered pairs. They are rarely asked questions about maximum and minimum values; intervals over which a function increases, decreases or levels off; or rates of change. 

Some of the most interesting and thorough work that has been conducted on teacher knowledge of students has occurred under the auspices of Cognitively Guided Instruction (CGI), a professional development program for teachers at the University of Wisconsin.
  Carpenter, Fennema, Peterson, and Carey found that teachers’ knowledge of children’s thinking tended to be informal and lacking organization or coherence.
  The researchers then designed a professional development project that provided teachers with a classification of addition and subtraction problems and descriptions of variations in students thinking around those problems.  Subsequent generations of CGI included information about students’ thinking about other mathematics as well.
  

Participants learned about a framework of children’s thinking, as well as about particular mathematics problems and the patterns of children’s thought about those problems.  Thus, teachers might leave CGI discussions with more “theoretical” knowledge of the characteristics and development of children’s thinking and “particular” knowledge of problems. No prescriptions about the implications for practice were made, and teachers made their own decisions about how to use their knowledge of student thinking in their teaching.

A series of studies have been done investigating the impact of CGI on teachers and students.  In one analysis, Carpenter, Franke, and Levi contrasted two teachers -- Ms. Sanford and Ms. Cole.
  Ms. Sanford had learned many things from CGI.  The lessons she learned ranged from “big ideas” (e. g., that children construct their understandings) to specific strategies  that children typically invent when learning to add and subtract multi-digit numbers.  Ms. Sanford saw her own learning in ways similar to her views of children’s learning:  She built her professional knowledge through experience and reflection, some of which took place out of school, most of which happened in her own classroom. Ms. Sanford left CGI with a framework for continuing her own investigations into students’ thinking.  And she saw that as part of her practice.

Ms. Cole also learned about constructivism.  She reported that CGI helped her learn how important it was to listen to children.  When asked how she would continue to learn more things, Ms. Cole talked of taking more classes and rereading articles from past classes.  She did not view her own teaching as a site for her continued professional development.  Rather, professional knowledge was a fixed body of information that could be packaged and delivered in courses and experiences outside of classrooms.  And her job, as teacher, was to take that newly acquired knowledge and weave it into her practice.  

Carpenter, Franke, and Levi note the complex interdependence of a teacher’s beliefs and teaching, and how those beliefs shape future learning opportunities:

Ms. Sanford believed that she would learn from her students, and her classroom practices provide a context for her learning.  Ms. Cole did not perceive her classroom as a place for her own learning about student thinking, and her class interactions provided relatively little opportunity for such learning.  It is not clear whether teachers construct classrooms in which they can learn from students because of their beliefs about engaging in practical inquiry to better understand student thinking or whether their beliefs come from interacting and learning from their students.  We suspect it is not all one way or the other.

In another analysis, Franke, Carpenter, Levi, and Fennema observed and interviewed 22 teachers who had participated in a later version of CGI – which consisted of summer workshops and two years of field support.
  The researchers found that teachers – four years later – were at different levels of development.  Based on their research, they proposed four levels of teacher development: 

Level 1:  A teacher at Level 1 does not believe that the students in his or her classroom can solve problems unless they have been taught how.

Level 2:  At Level 2, a shift occurs as the teachers begin to view children as brining mathematical knowledge to learning situations.

Level 3:  The teacher at Level 3 believes it is beneficial for children to solve problems in their own because their own ways make more sense to them and the teachers want to the children to understand what they are doing.

Level 4A:  The teacher at Level 4A believes that children’s mathematical thinking should determine evolution of the curriculum and the ways in which the teachers individually interact with the student.

Level 4B:  The teacher at Level 4B knows how what an individual child knows fits in with how child mathematical understanding develops.

Using interviews and observations, the researchers categorized 10 of their 22 informant-teachers as level 4B, 2 as 4A, 4 as Level 3, 6 as Level 2, and 1 as Level 1.  Teachers who had reached Level 3 showed the most instability, with 4 moving to Level 2 while 4 stayed at Level 3.  Teachers who were at level 4A or 4B stayed at that level with the exception of one 4B teacher who became more of a Level 3 teacher.  The researchers found that while all 22 teachers reported that children’s thinking was a significant part of the way that they thought about instruction, the teachers’ varied both in how detailed their knowledge of children’s thinking was and how much emphasis they placed on children’s thinking in their teaching.

Another observable difference in the teachers was the extent to which they conceptualized CGI-related knowledge as a theoretical framework or as a set of problem types.  Level 3 teachers recognized that there were different problem types and used those problems in their teaching.  They imported the CGI problems into their practice, modifying their practice somewhat to accommodate for more listening to students.  Teachers at Levels 4A and 4B put more emphasis on the conceptual framework of CGI, placing the illustrative problem types with that overarching structure.  Within the larger frame, they continued to acquire and organize a great deal of specific knowledge about children.  Level 3 teachers did not:

The Level 3 teachers focused on children’s abilities to solve problems in a variety of ways.  They valued the children’s solutions, not in terms of the specific strategy the child used but rather in terms of having the children use and share different strategies. . . . Often Level 3 teachers could not explain their students’ thinking.  At times they told us that they were not sure what a given student had done;  other times they made general inferences about why a child had difficulty with a problem that they could not support with specific detail.

The researchers also detected differences in teachers’ perceptions of their role in the development of knowledge of children’s thinking.  Teachers at Level 4B thought that it was both within their power and their responsibility to develop knowledge of student thinking.  While the CGI research had launched them on the path of learning about children’s mathematical thinking, these teachers saw their practice as a site for further inquiry – this time, their own.  They were constantly testing that knowledge and engaging in practical inquiry.  Teachers at Level 4A and below did not talk about learning more about children’s thinking on their own.  As the researchers note, “Teachers at Level 3 and Level 4A think the knowledge is critical and it is central in how they think about their teaching, but they see the knowledge as something passed on to them.”

In addition to interview and observational data, CGI researchers collected data on student achievement, teacher beliefs, and teacher knowledge.  Thus, researchers were able to measure and characterize teacher learning as well as student learning.  The researchers found that teachers who participated in CGI taught problem solving significantly more, number facts and skills significantly less.  The teachers used different instructional strategies, listened to students more, and believed that instruction would build on what students know.  Analyses of student achievement showed that students of CGI teachers recalled number facts at a higher level, as well as exceeding students in control classrooms in problem solving and confidence.

This kind of detailed knowledge of students is neither obvious, nor is it readily known by mathematicians and scientists who are busy creating new mathematical or scientific knowledge, not new teaching knowledge.  Yet good teaching depends on this kind of knowledge.   Unfortunately, unlike our Asian colleagues, our pedagogical content knowledge is quite uneven.  However, the careful work of the CGI researchers suggests that it can be very helpful to teachers as they decide what tasks to present students and how to learn from their practice.

Obviously, there are other issues about students and mathematics, for instance, the gender research that has investigated the achievement of young girls and boys in mathematics and trends over time that teachers ought to know.  One challenge confronted by all teacher preparation programs is to select from the varied sources of knowledge concerning students as they construct curricula for teacher education.  The CGI work suggests that some PCK can be learned outside of practice, but that its use and development over time take place in the context of practice.  This too has implications for your Title II programs, as they deliberate on what knowledge prospective teachers need to have before they are certified, and what knowledge is best left to be developed in induction programs, or later in teachers’ careers.  

Knowledge of instruction and alternative representations.   Another aspect of pedagogical content knowledge involves knowledge of instructional power of particular kinds of representations and the strengths and limitations of certain kinds of instruction for communicating various types of mathematical knowledge, skill, and understanding.  For example, in her dissertation, Sarah Theule Lubienski examined the differences in how middle school students from different socioeconomic backgrounds experienced a discourse-heavy mathematics instruction.  She found students who came from middle class families were more comfortable with the ambiguity of such classrooms, tended to talk more, and take more risks in their classroom participation.  Students who came from lower socioeconomic backgrounds were more unglued by the demands to speak, to publicly reason when they did not know the answer, and to explore ideas rather than recite correct answers.
  Granted, discussions of class and social status are difficult to sustain (for fear that offensive language or class stereotyping will occur).  And Lubienski’s analyses are based on a relatively small sample of students.  However, combined with Lisa Delpit’s argument that “other people’s children” may not share the cultural capital of white, middle class society, and that instruction ought not further disadvantage such students by presuming certain knowledge, skills, and dispositions, research like Lubienski’s raises issues one ought to consider.

Studies of cultural differences might raise similar questions:  When teachers utilize discourse-heavy strategies (class discussions, student public presentations of their reasoning, etc.), these might have differential effects on students for whom English is a second language and for students who come from cultures in which discourse patterns differ.  

In the area of the effectiveness of various representations for enabling student learning, there is a large industry of research in mathematics, one that cannot be even superficially summarized here.  Some of the most promising work takes place within professional development projects designed to help teachers learn new instruction and to support their learning over time.
  Before discussing some of the current thinking about instruction in mathematics, another issue bears brief analysis.

Some of the most heated recent debates about standards in mathematics education have concerned the issue:  Should and can content standards stand apart from pedagogical recommendations?  That is, when discussing what content teachers should teach, is it possible to separate discussions of content from discussions of how something ought to be taught?

Perhaps this issue is a perennial struggle in mathematics education, for even documents from the turn of the 20th century reveal that policymakers and educators were urging schoolteachers to teach mathematics in ways that go beyond rote memorization and what critics call “drill-and-kill.”  The issue was raised again in the 1980s and 1990s when many reform-oriented documents (like the 1985 and 1988 California frameworks, as well as the 1988 NCTM Standards) appeared to over-emphasize what other critics alternatively label “constructivist,” “discovery,” and “progressive” pedagogies.  For example, the authors of the 1985 California Mathematics Framework consistently de-emphasized traditional teaching methods (direct instruction, memorization, worksheets, for example) while they advocated more progressive pedagogies (who group discussions in which students share authority with teachers and texts, open-ended investigations, small and collaborative group work, for example).
  This overemphasis on progressive instruction led some parents and educators to feel like traditional methods were taboo, and thoughtful critics raised questions about “throwing the baby out with the bathwater” and an oppressive progressive ideology.

These critics wanted to know what evidence exists to support the changes advocated in the 1985 and 1992 Frameworks.  Subsequent standards-writing efforts have entailed sustained efforts on the part of some editors to eliminate teaching language from standards:  “Can’t we simply list the content we want children to acquire and leave to teachers the decisions about how best to teach that content” some policymakers ask.  This is a reasonable question that also requires sustained attention, for the answer is not – as some would hope – obvious. 

Two distinct issues are consistently confounded in this debate.  One concerns the whether one can separate teaching from content;  the other concerns what research teaches us about the effectiveness of certain methods.  I discuss each briefly.

On the matter of the interaction of method and content:  Some see teaching as a ship on which content is laid and then sent to children for its acquisition.  In this view, teaching can be seen as separate from content, for it is only a carrier ship, nothing more.  To switch analogies:  If a pigeon delivers a message or a courier does so, the message – on a piece of paper – remains the same.

Others consider the relationship of teaching and content less easily disentangled.  Hyman Bass, writing to mathematicians, argues:

Pedagogy is not something to be added after the fact to content.  Pedagogy and content are inextricably interwoven in effective teaching.  Pedagogy, like language itself, can either liberate or imprison ideas, inspire or suffocate constructive thinking.

This argument about the influence of the medium on the message is, of course, not limited to education.  Bass alludes to similar debates about language, and one hears the issues echoed in scholarship on rhetoric, literary theory, art, history.  Again, it is an issue that needs more careful attention than I can devote to it here.  However, it is important to understand that advocates for different views of teaching and what teachers need to know will often differ in their assumptions about the interrelationship of knowledge and teaching.

The second issue, often confounded with the first, concerns whether we “know” that some instructional strategies work better than others.  Methodologically, such questions are a nightmare.  A strictly experimental approach that controls for all but one variable does not capture the “blooming, buzzing confusion” of school.  Researchers try to account for multiple variables – prior student achievement and experience, the fidelity of instructional method’s implementation, other materials and resources available, school effects.  While some important strides have been made in creating robust models for analysis, much work is left to do.
   

Further, for many assessments of instructional methods, there is some concern about the alignment of the tool used for measuring student achievement and the goals of the instructional strategy or curriculum.  U. S. standardized tests tend to emphasize procedural and computational skill;  instructional programs interest in developing other kinds of knowledge – conceptual, for example, are forced to develop their own assessments.

The history of research on teaching includes lines of research that tackle the problems in this conceptual and methodological knot in a variety of ways.  Some researchers use experimental or quasi-experimental designs; others do field studies and surveys;  others do discourse analyses and ethnographies.  And, as critics like Hirsch note, there is considerable variability in the quality of that research.  However, the multiple fields within educational research – educational psychology, educational sociology, economics of education, etc. – all rely on a peer review process that aims to keep quality high.

Due to concerns about these and related questions, the California State Board of Education commissioned from Douglas Carnine, a professor at the University of Oregon, a review of the literature on effective mathematics instruction.  The report, Review of High Quality Experimental Mathematics Research (known as the “Carnine report” to insiders), reviewed only 110 studies from the over 8700 published studies available.  The authors argued that they only selected “high quality” work that, in their view, was only work that used experimental designs.  The review was roundly criticized for its own biases, including a narrow view of research and social science, and an uneven reporting of the actual results from the studies reviewed.
 

In short, there is reason to suspect the quality of some educational research. However, the tendency of the debate right now – which involves balkanization – has obstructed, rather than facilitated progress.  We know less now than we could about effective mathematics instruction, primarily because too many participants -- on all sides of the debates -- appear eager to “throw the baby out with the bath water.   

Nonetheless, research on mathematics teaching continues, and interest in it mounts.  In their careful analyses of videotapes of teaching in Japan, German, and the U. S., Stigler, Hiebert and their colleagues found the U. S. version of mathematics teaching to be a weak cousin of that in other countries.  As they dove deeper into the character of the classrooms they were viewing, the researchers concluded that understanding teaching goes well beyond having an arsenal of instructional practices to use.  Instead, Stigler and Hiebert argue, teaching is a system, “not a loose mixture of individual features thrown together by the teacher.  It works more like a machine, or system.”

Further, in contrasting the cultures of teaching, Stigler and Hiebert note three patterns.  The German pattern consisted of four activities:  reviewing previous material; presenting the topic and problems for the day; developing procedures to solve the problem; and practicing.  The Japanese pattern included: reviewing the previous lesson; presenting the problem of the day; students working individually or in groups on the solution to that problem; whole class discussions of solution methods; and the teacher highlighting and summarizing main points.  The U. S pattern consisted of reviewing previous material; demonstrating how to solve the problem of the day; practicing; and correcting seatwork and assigning homework.

The researchers note that although there seems to be international agreement on the need to review previous work and present the problem of the day, those activities have quite different meanings within the different systems of teaching that exist.  In Japan and Germany, for example, presenting the problem of the day is designed to engage students in intellectual work.  In the U. S., the presentation is an opportunity to launch students into practice, not thought.  The development of procedural skill in U. S. classrooms seems to elbow out any opportunity for students to think about the problems at hand.  

In addition to these international studies, there is a wealth of information on various instructional strategies that are useful in mathematics.  This information comes in the form of very successful curricular materials, in research on mathematics teaching, and in the “wisdom of practice,” the experiences of mathematicians and K-12 teachers who have used various strategies to help students learn.  Most research on teaching suggests that a teacher-proof curriculum is impossible.  And since other research on U. S. teacher knowledge suggests that teachers lack both mathematical knowledge and pedagogical content knowledge, contemporary reform efforts have taken a more holistic approach.  Rather than examine instructional strategies independent of context, programs of research and development have packaged professional development with curriculum with assessment.  

The work of QUASAR staff offers a good example of what it takes to support teachers learning to teach a balanced mathematics curriculum.  The teachers and schools needed to participate in whole school reforms, with onsite support in the form of materials and personnel.  Professional development opportunities that provided room for reflection and inquiry were necessary, as were rich curricular materials.  Even with their intensive level and broad conceptualization of the necessary support, these researchers still found variation in implementation and student achievement.  Schools varied in the degree to which staff members were able to keep instructional tasks demanding.  One site, for example, that implemented high level tasks and kept them there had the highest student achievement.  Another site, that turned high level tasks into low level ones, had the lowest student achievement;  the sites that varied in how well high level tasks were implemented showed moderate gains.

Again, we are left with knowledge of what does not happen in the U. S., a shaky foundation upon which to the make claim about what teachers ought to know.  However, it appears logical to claim that teachers need to know how to use a range of strategies – many of which they have themselves seldom seen, used, or experienced – and to understand how those strategies fit into a pattern of activities in their teaching.  In Shanghai, it is of considerable concern to teachers that teaching is “seamless,” that teachers and students alike move from one part of a lesson to another without any jarring moments.
  Such seamlessness requires understanding how different activities and strategies complement, supplement, support, and reinforce one another.  If our prospective teachers began learning how to think of instruction in this way, we might begin to see movement toward a more coherent mathematics instruction in the U. S.  In the context of this essay, however, it is important to note that this would require the Title II collaboratives to prepare prospective teachers in ways that go against the grain.  

Given this background on teachers’ pedagogical content knowledge in mathematics, you also asked:  What are some examples of means to measure those dimensions and the associated challenges?  How can these dimensions of teachers’ professional knowledge and practice be applied to a large-scale national evaluation of programs designed to improve pre-service teacher education?

I’ll address the issue of measurement first.  Several research and development projects have focused on the development of measures of pedagogical content knowledge, both in case studies and in surveys.
  Probably the most interesting and relevant work in the measurement and assessment of teachers’ pedagogical content knowledge is that being done by the researchers on the Study of Instructional Improvement at the University of Michigan and INTASC in its portfolio development.

In the Study of Instructional Improvement, Rowan, Cohen, Ball and others are developing a set of instruments (including classroom observations, teacher logs, and surveys) that would assess teacher learning, including teachers’ acquisition of pedagogical content knowledge.  Other relevant work includes the development of portfolios for beginning teachers by Jean Miller and her colleagues at INTASC.  

 As to the implications for the evaluation of the Title II collaboratives, several issues emerge.  Again, it would be important to assess the degree to which the institutions are aware of the scholarship and debates that are discussed here and the extent to which they are considering those issues in their work.  Second, it might be helpful to track the extent to which any of the Title II programs have built upon the considerable knowledge and insight produced by projects like CGI and QUASAR.  Projects like these have developed materials that have potential both for teacher preparation programs and professional development, and one sign of an institution’s knowledge of scholarship might be the extent to which those programs adjust both their curricula and their own teaching practices to what researchers on those projects (and others like them) have learned.

One of the challenges that I have pointed to consistently in this essay concerns what can be taught at the university and what kinds of knowledge are better developed after teachers have begun their careers.  And clearly, pedagogical content knowledge seems a form of knowledge more readily developed in schools.  However, as demonstrated by projects like CGI, the results of research can lead to the development of materials that launch prospective teachers’ PCK or PUFM long before they reach schools.  Other teacher educators have experimented with alternative curricula and instructional strategies that might also help.  These include the work done by scholars interested in the “case method” in teacher education, as well as the work done with hypermedia materials.
  The extent to which you find evidence that the Title II participants are expanding the range of methods they use to prepare their teaching might be another helpful indicator in an evaluation.  

You can probably sense an essential problem of delineating teachers’ knowledge, skill, and professional practices by this point:  There is simply too much to know.  Within PCK, I could have discussed what teachers might know about curricular materials – a dimension nominated by Grossman, as well as teachers’ knowledge of a range of subject-specific assessment devices.  I did not have time to review those literatures for this essay.  However, given the current debates about what constitutes high quality curricula and assessment, it is also reasonable to think that Title II participants would be preparing prospective teachers to be critical consumers of curricula and assessments.  This too might be woven into your evaluations.

The final dimension of teacher knowledge I nominate here – knowledge of learning theories – is a necessary condition for teachers’ capacity to critique curricula.  

Knowledge of learning theories

In a preliminary analysis of attempts to reform mathematics education, Michael Sedlak notes a pattern of predominant learning theories having a marked influence on mathematics education.  He argues that mathematicians and mathematics educators alike make assumptions about, and attempt to align their proposals with their understanding about the learning process, the psychology of learning, and the transfer and application of cognitive skills.
  Certainly in the contemporary setting in influence of theories of constructivism has been a lightning rod for much of the criticism and concern leveled at current standards and curricula.  I might consider constructivist theories of learning viable in some cases, but this does not lead me necessarily to choose a particularly teaching method.

The debates remain murky in this area for several reasons.  First, there is a tendency to slip from talk about learning to talk about teaching.  But choosing instructional strategies based on learning theories is neither simple nor straightforward.   Second, current talk does little to differentiate different theories of learning that have been developed.  Progressive-oriented theories – discovery learning and constructivism, for example, are clumped together as if they were the same thing.  Similarly, people speak of mastery learning and direct instruction as if they were monolithic.  While such theories might bear family resemblances, the ahistorical and uninformed discussions of these theories seldom attempt to represent them with accuracy.  It behooves us all to use the theories produced by scholars concerned with learning with more knowledge and care.

Finally, there appears to be a tendency to embrace a single theory and dismiss all others.
  Given the nature of theory in social science – that multiple theories tend to co-exist – it seems more prudent to approach learning theories more cautiously.  These are models intended to help guide one’s thinking as a teacher, not to turn teachers into ideologues.  

Given this background, it seems appropriate to expect teachers to be critical consumers of learning theories, instead of slaves to the learning theory du jour.  Prospective teachers are often exposed to learning theories in relatively superficial ways:  They learn Piaget’s stages, but nothing of subsequent scholarship that questions and challenges those stages.  They learn about Kohlberg’s theories of moral development, but nothing of the subsequent work of Gilligan and others who raised methodological and theoretical questions.  Prospective teachers are often taught to accept certain teaching methods without being provided with the background knowledge necessary to understand the learning theories that shaped those methods.  

In this case, a little knowledge is indeed a dangerous thing, for many teachers embrace curricula and teaching methods with little professional knowledge about learning that would enable them both to use those methods effectively and to be critical consumers of those materials.  Lacking such knowledge also cripples teachers’ capacity to construct reasoned arguments for why a particular instructional strategy, based on a specific theory of learning, it most appropriate in a given context.  

Given this background on teachers’ knowledge of learners, you also asked:  What are some examples of means to measure those dimensions and the associated challenges?  How can these dimensions of teachers’ professional knowledge and practice be applied to a large-scale national evaluation of programs designed to improve pre-service teacher education?
Standardized tests for teachers often include questions about learning theories, and they would offer one image of how to measure such knowledge.  Applied tests, like the performance assessments designed by the National Board for Professional Teaching Standards and INTASC offer another venue. 

In terms of your evaluation of programs, teacher preparation programs often satisfy the requirement for an introduction to learning theories through an educational psychology course.  Again, I could find no information about the actual content of such courses across the country.  One strategy might involve collecting information on what aspects of learning theory prospective teachers learn, and whether they are asked to apply their knowledge of theory in a critical way.  

Endnote

This essay only brushes the surface of the material relevant to your questions.  I apologize for its incompleteness, but hope that this discussion – both of teacher knowledge and of contemporary relevant issues – helps to inform your deliberations.  
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